
Real-Time Scheduling

Characteristics of a RTS

• Large and complex

• OR small and embedded
– Vary from a few hundred lines of assembler or C to millions

of lines of lines of high-level language code

– Concurrent control of separate system components
• Devices operate in parallel in the real-world, hence, better to

model this parallelism by concurrent entities in the program

• Facilities to interact with special purpose hardware
– Need to be able to program devices in a reliable and

abstract way

Characteristics of a RTS

• Extreme reliability and safety
– Embedded systems typically control the environment in which they

operate
– Failure to control can result in loss of life, damage to environment or

economic loss

• Guaranteed response times
– We need to be able to predict with confidence the worst case

response times for systems
– Efficiency is important but predictability is essential

• In RTS, performance guarantees are:
– Task- and/or class centric
– Often ensured a priori

• In conventional systems, performance is:
– System oriented and often throughput oriented
– Post-processing (… wait and see …)

Typical Components of a RTS

Terminology

• Scheduling
define a policy of how to order tasks such that a metric is maximized/minimized
– Real-time: guarantee hard deadlines, minimize the number of missed

deadlines, minimize lateness

• Dispatching
 carry out the execution according to the schedule

– Preemption, context switching, monitoring, etc.

• Admission Control
Filter tasks coming into the systems and thereby make sure the admitted
workload is manageable

• Allocation
designate tasks to CPUs and (possibly) nodes. Precedes scheduling

Preliminaries

Scheduling is the issue of ordering the use of system
resources

– A means of predicting the worst-case behaviour of the
system

activation dispatching

execution

preemption

termination

Non-Real-Time Scheduling

• Primary Goal: maximize performance

• Secondary Goal: ensure fairness

• Typical metrics:

– Minimize response time

– Maximize throughput

– E.g., FCFS (First-Come-First-Served), RR (Round-
Robin)

Example: Workload Characteristics

• Tasks are preemptable, independent with arbitrary arrival (=release)
times

• Times have deadlines (D) and known computation times (C)

• Tasks execute on a uni-processor system

Example Setup

Example:
Non-preemptive FCFS Scheduling

Example:
Round-Robin Scheduling

Real-Time Scheduling

• Primary goal: ensure predictability
• Secondary goal: ensure predictability
• Typical metrics:

– Guarantee miss ration = 0 (hard real-time)
– Guarantee Probability(missed deadline) < X% (firm real-time)
– Minimize miss ration / maximize completion ration (firm real-time)
– Minimize overall tardiness; maximize overall usefulness (soft real-

time)

• E.g., EDF (Earliest Deadline First, LLF (Least Laxity First), RMS
(Rate-Monotonic Scheduling), DM (Deadline Monotonic
Scheduling)

• Recall: Real-time is about enforcing predictability, and does
not equal to fast computing!!!

Scheduling: Problem Space

• Uni-processor / multiprocessor / distributed system

• Periodic / sporadic /aperiodic tasks

• Independent / interdependant tasks

• Preemptive / non-preemptive

• Tick scheduling / event-driven scheduling

• Static (at design time) / dynamic (at run-time)

• Off-line (pre-computed schedule), on-line (scheduling
decision at runtime)

• Handle transient overloads

• Support Fault tolerance

Task Assignment and Scheduling

• Cyclic executive scheduling (-> later)
• Cooperative scheduling

– scheduler relies on the current process to give up the CPU before
it can start the execution of another process

• A static priority-driven scheduler can preempt the current
process to start a new process. Priorities are set pre-
execution
– E.g., Rate-monotonic scheduling (RMS), Deadline Monotonic

scheduling (DM)

• A dynamic priority-driven scheduler can assign, and
possibly also redefine, process priorities at run-time.
– E.g., Earliest Deadline First (EDF), Least Laxity First (LLF)

Simple Process Model

• Fixed set of processes (tasks)

• Processes are periodic, with known periods

• Processes are independent of each other

• System overheads, context switches etc, are ignored
(zero cost)

• Processes have a deadline equal to their period
– i.e., each process must complete before its next release

• Processes have fixed worst-case execution time
(WCET)

Terminology: Temporal Scope of a Task

• C - Worst-case execution time of the task

• D - Deadline of tasks, latest time by which the task
 should be complete

• R - Release time

• n - Number of tasks in the system

• - Priority of the task

• P - Minimum inter-arrival time (period) of the task
– Periodic: inter-arrival time is fixed

– Sporadic: minimum inter-arrival time

– Aperiodic: random distribution of inter-arrival times

• J - Release jitter of a process



Performance Metrics

• Completion ratio / miss ration

• Maximize total usefulness value (weighted
sum)

• Maximize value of a task

• Minimize lateness

• Minimize error (imprecise tasks)

• Feasibility (all tasks meet their deadlines)

Scheduling Approaches (Hard RTS)

• Off-line scheduling / analysis (static analysis + static scheduling)
– All tasks, times and priorities given a priori (before system startup)
– Time-driven; schedule computed and hardcoded (before system startup)
– E.g., Cyclic Executives
– Inflexible
– May be combined with static or dynamic scheduling approaches

• Fixed priority scheduling (static analysis + dynamic scheduling)
– All tasks, times and priorities given a priori (before system startup)
– Priority-driven, dynamic(!) scheduling

• The schedule is constructed by the OS scheduler at run time

– For hard / safety critical systems
– E.g., RMA/RMS (Rate Monotonic Analysis / Rate Monotonic Scheduling)

• Dynamic priority schededuling
– Tasks times may or may not be known
– Assigns priorities based on the current state of the system
– For hard / best effort systems
– E.g., Least Completion Time (LCT), Earliest Deadline, First (EDF), Least Slack Time (LST)

Cyclic Executive Approach

• Clock-driven (time-driven) scheduling
algorithm

• Off-line algorithm

• Minor Cycle (e.g. 25ms) - gcd of all
periods

• Major Cycle (e.g. 100ms) - lcm of all
periods

Construction of a cyclic executive is
equivalent to bin packing

Process Period Comp. Time

A 25 10

B 25 8

C 50 5

D 50 4

E 100 2

Frank Drews Real-Time Systems

Cyclic Executive (cont.)

Cyclic Executive: Observations

• No actual processes exist at run-time

– Each minor cycle is just a sequence of procedure calls

• The procedures share a common address space and
can thus pass data between themselves.

– This data does not need to be protected (via semaphores,
mutexes, for example) because concurrent access is not
possible

• All ‘task’ periods must be a multiple of the minor
cycle time

Cyclic Executive: Disadvantages

With the approach it is difficult to:

• incorporate sporadic processes;

• incorporate processes with long periods;
– Major cycle time is the maximum period that can be accommodated

without secondary schedules (=procedure in major cycle that will call a
secondary procedure every N major cycles)

• construct the cyclic executive, and

• handle processes with sizeable computation times.
– Any ‘task’ with a sizeable computation time will need to be split into a

fixed number of fixed sized procedures.

Online Scheduling

Schedulability Test

Test to determine whether a feasible schedule exists

• Sufficient Test
– If test is passed, then tasks are definitely schedulable

– If test is not passed, tasks may be schedulable, but not necessarily

• Necessary Test
– If test is passed, tasks may be schedulable, but not necessarily

– If test is not passed, tasks are definitely not schedulable

• Exact Test (= Necessary + Sufficient)
– The task set is schedulable if and only if it passes the test.

Rate Monotonic Analysis: Assumptions

A1: Tasks are periodic (activated at a constant rate).
 Period = Intervall between two consequtive activations of task

A2: All instances of a periodic task have
 the same computation time

A3: All instances of a periodic task have the same relative deadline,
 which is equal to the period

A4: All tasks are independent
 (i.e., no precedence constraints and no resource constraints)

Implicit assumptions:

A5: Tasks are preemptable

A6: No task can suspend itself

A7: All tasks are released as soon as they arrive

A8: All overhead in the kernel is assumed to be zero (or part of)

iP
iT

iT

iC

iT
)(ii PD 

iC

Rate Monotonic Scheduling: Principle

Principle

• Each process is assigned a (unique) priority based on its period (rate);
always execute active job with highest priority

• The shorter the period the higher the priority

• (1 = low priority)

• W.l.o.g. number the tasks in reverse order of priority

jiji PP  

Process Period Priority Name

A 25 5 T1

B 60 3 T3

C 42 4 T2

D 105 1 T5

E 75 2 T4

Example: Rate Monotonic Scheduling

• Example instance

• RMA - Gant chart

Example: Rate Monotonic Scheduling

 timeprocessing period),( iiiii CPCPT

0 5 10 15

)1,4(1 T

)2,5(2 T

)2,7(3 T

Deadline Miss

response time of job
1,3J

Utilization

i

i

i
i T

P

C
U task ofn Utilizatio

0 5 10 15

)1,4(1 T

)2,5(2 T

)2,7(3 T

4.0
5

2
:Example 2 U

