Real-Time Scheduling

Characteristics of a RTS

e Large and complex

e OR small and embedded

— Vary from a few hundred lines of assembler or C to millions
of lines of lines of high-level language code

— Concurrent control of separate system components

* Devices operate in parallel in the real-world, hence, better to
model this parallelism by concurrent entities in the program

* Facilities to interact with special purpose hardware

— Need to be able to program devices in a reliable and
abstract way

Characteristics of a RTS

* Extreme reliability and safety

— Embedded systems typically control the environment in which they
operate

— Failure to control can result in loss of life, damage to environment or
economic loss

e Guaranteed response times

— We need to be able to predict with confidence the worst case
response times for systems

— Efficiency is important but predictability is essential
* In RTS, performance guarantees are:
— Task- and/or class centric
— Often ensured a priori
* In conventional systems, performance is:
— System oriented and often throughput oriented
— Post-processing (... wait and see ...)

Typical Components of a RTS

Real-Time

Clock

Operator’s
Console

Algorithms for
Digital Control

le

(——

Engineering

"

Data Logging

|

Data Retrieval
and Display

¥ Interface =P

System

Remote
Monitoring System

Display

Operator

Interface

Devices

Real-Time Computer

Terminology

Scheduling

define a policy of how to order tasks such that a metric is maximized/minimized

— Real-time: guarantee hard deadlines, minimize the number of missed
deadlines, minimize lateness

Dispatching
carry out the execution according to the schedule
— Preemption, context switching, monitoring, etc.

Admission Control

Filter tasks coming into the systems and thereby make sure the admitted
workload is manageable

Allocation
designate tasks to CPUs and (possibly) nodes. Precedes scheduling

Preliminaries

Scheduling is the issue of ordering the use of system
resources

— A means of predicting the worst-case behaviour of the
system

activation

preemption

v

Non-Real-Time Scheduling

* Primary Goal: maximize performance
* Secondary Goal: ensure fairness

* Typical metrics:
— Minimize response time
— Maximize throughput

— E.g., FCFS (First-Come-First-Served), RR (Round-
Robin)

Example: Workload Characteristics

e Tasks are preemptable, independent with arbitrary arrival (=release)
times

* Times have deadlines (D) and known computation times (C)

* Tasks execute on a uni-processor system

Example Setup
e
T D |

A C,
T2 D, l

T3 ‘ D l

Tl
12
T3

T4

Example:
Non-preemptive FCFS Scheduling

Missed
=T I :rr
~ Ll'-...-.iLl]lJ'l'i... L

Tl
T2
T3

T4

Example:
Round-Robin Scheduling

Missed

deadline!!

Real-Time Scheduling

Primary goal: ensure predictability
Secondary goal: ensure predictability

Typical metrics:
— Guarantee miss ration = 0 (hard real-time)
— Guarantee Probability(missed deadline) < X% (firm real-time)
— Minimize miss ration / maximize completion ration (firm real-time)
— I\/Iini;nize overall tardiness; maximize overall usefulness (soft real-
time
E.g., EDF (Earliest Deadline First, LLF (Least Laxity First), RMS
(Rate-Monotonic Scheduling), DM (Deadline Monotonic
Scheduling)

Recall: Real-time is about enforcing predictability, and does
not equal to fast computing!!!

Scheduling: Problem Space

Uni-processor / multiprocessor / distributed system
Periodic / sporadic /aperiodic tasks
Independent / interdependant tasks

Preemptive / non-preemptive
Tick scheduling / event-driven scheduling
Static (at design time) / dynamic (at run-time)

Off-line (pre-computed schedule), on-line (scheduling
decision at runtime)

Handle transient overloads
Support Fault tolerance

Task Assignment and Scheduling

Cyclic executive scheduling (-> later)

Cooperative scheduling

— scheduler relies on the current process to give up the CPU before
it can start the execution of another process
A static priority-driven scheduler can preempt the current
process to start a new process. Priorities are set pre-
execution

— E.g., Rate-monotonic scheduling (RMS), Deadline Monotonic
scheduling (DM)

A dynamic priority-driven scheduler can assign, and
possibly also redefine, process priorities at run-time.

— E.g., Earliest Deadline First (EDF), Least Laxity First (LLF)

Simple Process Model

Fixed set of processes (tasks)
Processes are periodic, with known periods
Processes are independent of each other

System overheads, context switches etc, are ignored
(zero cost)

Processes have a deadline equal to their period
— i.e., each process must complete before its next release

Processes have fixed worst-case execution time
(WCET)

Terminology: Temporal Scope of a Task

C
D

R

n
4

P

J

- Worst-case execution time of the task

- Deadline of tasks, latest time by which the task
should be complete

- Release time

- Number of tasks in the system

- Priority of the task

- Minimum inter-arrival time (period) of the task

— Periodic: inter-arrival time is fixed
— Sporadic: minimum inter-arrival time
— Aperiodic: random distribution of inter-arrival times

- Release jitter of a process

Performance Metrics

Completion ratio / miss ration

Maximize total usefulness value (weighted
sum)

Maximize value of a task
Minimize lateness
Minimize error (imprecise tasks)

Feasibility (all tasks meet their deadlines)

Scheduling Approaches (Hard RTS)

» Off-line scheduling / analysis (static analysis + static scheduling)
— All tasks, times and priorities given a priori (before system startup)
— Time-driven; schedule computed and hardcoded (before system startup)
— E.g., Cyclic Executives
— Inflexible
— May be combined with static or dynamic scheduling approaches
* Fixed priority scheduling (static analysis + dynamic scheduling)
— All tasks, times and priorities given a priori (before system startup)
— Priority-driven, dynamic(!) scheduling
* The schedule is constructed by the OS scheduler at run time
— For hard / safety critical systems

— E.g., RMA/RMS (Rate Monotonic Analysis / Rate Monotonic Scheduling)
* Dynamic priority schededuling
— Tasks times may or may not be known
— Assigns priorities based on the current state of the system
— For hard / best effort systems
— E.g., Least Completion Time (LCT), Earliest Deadline, First (EDF), Least Slack Time (LST)

Cyclic Executive Approach

* Clock-driven (time-driven) scheduling Process Period Comp. Time
algorithm
e Off-line algorithm A 25 10
 Minor Cycle (e.g. 25ms) - gcd of all B 25 8
periods
* Major Cycle (e.g. 100ms) - lcm of all
periods C 50 5
Construction of a cyclic executive is
equivalent to bin packing D 50 4
E 100 2

loop

Cyclic Executive (cont.)

Wait_For_Interrupt;
Procedure_For_A;
Procedure For_ B:
Procedure For C;:

Wait_For_Interrupt;
Procedure For A:
Procedure_For_B;
Procedure_For_D;
Procedure For E;

Intgrzupt

Interiupt

Wait_For_Interrupt;
Procedure_For_A;
Procedure_For_B;
Procedure For_ C:

Wait_For_Interrupt;
Procedure For A:
Procedure_For_B;
Procedure_For_D;

end loop;

Intemupt

Inte rocp

A

- A

A

E > A

Cyclic Executive: Observations

No actual processes exist at run-time
— Each minor cycle is just a sequence of procedure calls

The procedures share a common address space and
can thus pass data between themselves.

— This data does not need to be protected (via semaphores,
mutexes, for example) because concurrent access is not
possible

All ‘task’ periods must be a multiple of the minor

cycle time

Cyclic Executive: Disadvantages

With the approach it is difficult to:
* incorporate sporadic processes;

* incorporate processes with long periods;

— Major cycle time is the maximum period that can be accommodated
without secondary schedules (=procedure in major cycle that will call a
secondary procedure every N major cycles)

e construct the cyclic executive, and

* handle processes with sizeable computation times.

— Any ‘task’ with a sizeable computation time will need to be split into a
fixed number of fixed sized procedures.

Online Scheduling

task
activation

termination

>

signal from
resource

wait on busy resource

Schedulability Test

Test to determine whether a feasible schedule exists
e Sufficient Test

— If test is passed, then tasks are definitely schedulable

— If test is not passed, tasks may be schedulable, but not necessarily
* Necessary Test

— |If test is passed, tasks may be schedulable, but not necessarily

— If test is not passed, tasks are definitely not schedulable
* Exact Test (= Necessary + Sufficient)

— The task set is schedulable if and only if it passes the test.

Rate Monotonic Analysis: Assumptions

Al: Tasks are periodic (activated at a constant rate).
Period P|= Intervall between two consequtive activations of task T.

A2: All instances of a periodic task hdye

the same computation time Ci

A3: All instances of a periodic task ha'\(e the same relative deadline,
which is equal to the period (Di = PI)

A4: All tasks are independent
(i.e., no precedence constraints and no resource constraints)

Implicit assumptions:

A5: Tasks are preemptable

A6: No task can suspend itself

A7: All tasks are released as soon as they arrive

A8: All overhead in the kernel is assumed to be zero (or part of) C.

Rate Monotonic Scheduling: Principle

Principle
 Each process is assigned a (unique) priority based on its period (rate);
always execute active job with highest priority

 The shorter the period the higher the priority
« B <P, =7 >7(1=low priority)
 W.l.o.g. number the tasks in reverse order of priority

Process Period Priority Name
A 25 5 T1
B 60 3 T3
C 42 4 T2
D 105 1 5
E 75 2 T4

Example: Rate Monotonic Scheduling

 Example instance

T4 |
T3 —
™ B
£ N o N O N o N O 1

P4
e RMA - Gant chart A
s ~
4 I L
T3 I | |
| L R | |
o N N o O A |

Example: Rate Monotonic Scheduling

-
| 'aWal'd Va

C. =processing time

Deadline Miss

/

7

o

. 10 15

response time of job J3 .

U.

C:I

¥

Utilization
Utilization of taskT.

